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Numerica hohtion of Coupling Between Two Collinear

Parallel-plate Waveguides

Y. E. ELMOAZZEN, MEMBER, IEEE, AND LOTFOLLAH SHAFAI, MEMBER, IEEE

Absfracf—The problem of coupling between two collinear parallel-

plate waveguides is investigated numerically using moment methods.

The exciting mode in the waveguide is assumed as the incident field,

and the integral equation for the induced current is expressed in
terms of the reflected, transmitted, and evanescent currents on the

waveguides. The integral equation is then solved numerically by

a point-matching method and the reflection and the transmission
coefficients and the radiated fields are obtained. To examine the

accuracy of the results, the special case of a semi-infinite exciting
waveguide coupled to a finite coupled waveguide is also considered
and is solved numerically by treating the singularities of the induced

currents using a transformation method. For a TEO,1excitation of the

ex~ting waveguide, the results of both numerical methods are com-

pared with the analytical results obtained previously using the

Wiener-Hopf technique, and are found to be in good agreement. The

methods are then used to study the effect of the coupled waveguide

on the radiation field.

I. INTRODUCTION

N UMERICAL techniques have recently been used to

investigate certain scattering and antenna problems,

for which an exact analytical or approximate solution is

not readily obtainable. Two-dimensional problems in-

volving perfectly conducting cylinders were studied by

Mei and Van 131adel [1] and Andreasen [2] by solving

the integral equation for the induced currents using the

moment method. The scattering by the dielectric cylinders

was investigated by Richmond [3], [4] where a solution

is obtained by a numerical evaluation of the integral

equations for tlie polarization currents in the dielectric.

Similar scattering as well as antenna problems were also

investigated by various authors and are summarized later

by Barrington [5] and Mittra [6].

In general, the numerical evaluation of the integral

equations is carried out by using a moment or a point-

matchlng method to convert the integral equations to a

set of linear simultaneous equations. The number of simul-
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taneous equations for a desired degree of acclwacy usually

depends on the electrical length of the cross-sectional

contour for the conducting cylinders and on the cross-

sectional area of the dielectric cylinders. However, for

problems involving discontinuities ‘in the clross-sectional

contour a larger number of matching points may become

necessary if the induced current had a singular behavior

near” the discontinuities. For an accurate solution of these

types of problems a treatment of the singul&ities which

can effectively reduce the required number of matching

points for a desired degree of accuracy may Ibe necessary.

To remove these singularities Abdelrnessih and Sinclair

[7] have used Meixner’s edge conditions to describe the

behavior of the currents near a discontinuity. An alterna-

tive method based on the coordinate transformation has

also been used by Shafai [8] where the singular behavior

of the current is related directly to the geometry of the

scatterer. The convergence of the ‘solution may also be

improved through the use of a priori knowledge of the

solution [9]. Here the unknown solution my~ be assumed

as the sum of a known” approximate solution and an un-

known perturbation function, which is then found by an

application of the moment methbd.

In the previously mentioned papers the moment method

has been applied to solve scattering problern~ of obstacles

with a finite cross-sectional area. The extc’nsion of the

method to two-dimensional scattering by obstacles of serni-

infinite but arbitrary cross secti~ns has recently been in-

vestigated by Morita [10], [11]. The induced current

is assumed to be the sum of known geometrical optics

and unknown diffraction current, and “the unknown current

is found numerically. This method was later used by Wu

and Chow [12] to investigate the problem c)f dkscontinu-

ities inside semi-infinite waveguides. They have expressed

the induced currents in terms of propagating and evanes-

cent modes and have f ounil evanescent currents numeri-

cally, by using their localized nature, in order to apply

the moment method for a finite section near the discon-

tinuity y.

In this paper the approach of Wu and Chow is used to

formulate the coupling between two semi-i infinite wave-
guides. The induced currerit is expressed in terms of in-

cident, reflected, transmitted, qnd evanescent currents

which are found by an application of the ‘pcfint-matching

method. The method is then applied to the case where the

coupled waveguide is of finite length. To examine the

accuracy of the solution the transformation method is
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also used to investigate the latter case of the finite-coupled

waveguide and the computed results are compared with

those of the moment method and the analytic results of

the Wiener–Hopf technique [13]. The methods are then

used to study the effect of each induced current and the

coupled waveguide on the radiation field. It is shown that

the coupled waveguide has a significant effect on the

radiation field and its pattern can be modified by changing

the separation and the length of the coupled waveguide.

II. FORMULATION OF THE PROBLEM

A. The Moment Method

A geometry of the problem is shown in Fig. 1. Assuming

a TEO,1 mode to propagate in the exciting waveguide, the

current densities, due to the incident wave on the lower

and the upper walls, are equal and are given by (the time

factor exp (id) is understood)

(1)

where 00 = sin–l (k/2d), d is the waveguide width, and q

is the intrinsic impedance of the medium inside the wave-

guide. Due to the discontinuity at x = O, part of the in-

cident field reflects back into the exciting waveguide and

contributes to the reflected field. The remaining part

undergoes a diffraction at the open end of the exciting

waveguide and contributes partly to the radiation field

and partly undergoes further diffraction at the open end

of the coupled wa,veguide. The multiple diffractions be-

tween two waveguides give rise to the reflected and the

transmitted fields in the waveguides, which induce current

densities”in the form

sin 00
Jzr . $R — exp ( – ikx cos O.), X>o, y = O,d

‘V

(2)

sin 00
Jzt . ,#/’ — exp (ikx cos I%), x < —L, y = O,d

v

(3)

where R and T are the reflection and the transmission co-

efficients, respective y. The evanescent modes also con-

tribute to the induced currents on the waveguides, but

\

\

their contribution is significant only near the open end

of each waveguide. Representing these evanescent currents

by> = 2J,e, the boundary condition E= = O on the walls

gives the following integral equation for the induced cur-

rents [12]:

!
O = ~ [fi(r’) + J<r’) + Y(T’) + J’(r’)]HOfz)

w

●(J%I r – r’ 1) d(kr’) (4)

where r and r! are the coordinates of the field and source

points on the walls of the waveguides. The integration

path W is along the walls, which support the respective

current distribution. Since this integral equation can not

be solved exactly, a moment method will be used to reduce

the integral equation to a set of linear simultaneous equa-

tions. However, the integrals involving Ji, J’, and Jt can

be evaluated exactly which gives the excitation and the

coefficients R and T. For the evanescent currents J“, using

unit pulses for the base function, the waveguide walls

may be divided into N segments wit~ a current Jn’ at

the center of each segment. Since the evanescent currents

are significant only near the open ends, the N segment

may be chosen between x = O and x = x. and between

x = —L and % = Xb. Equation (4) then contains N + 2

unknowns which, with N + 2 test points, can be written

in a matrix form as

[lm,n][ fm] = [gm] (5)

where

(

(~/4)J~’, m = 1,2,. ..,N

fm = R, m=N+l (6)

T, m=N+2

/Jm=– ‘~ [1+(0, ~ ,0) + 1+(0, m ,kd)] (7)

and the elements of the matrix lm,nare given as follows.

1) Form= 1,2,... ,N+2andn= 1,2,...,N

(

[H!)(’) (k I Xm – x.’ /) + Ho(’) (k[($m

– G’) 2 + dz]llz) ]A (kX.’) , ‘m #’n

1m,% =

[1 – i(2/m) (ln [A(kx.J)/4]

+ Y – 1) + Ho(2J(lcd)]A(kx.’), m=n

(8)

where y = 0.5772 . . . .

2) Form = 1,2,..., N+2andn=N+l

1~,N+~ = ‘~ [1-(0, ~ ,0) + 1--(0, ~,kd) ]. (9)

3) Form = 1,2,..., N+2andn=N+2

1~,N~~ =
sin 00
~ [1+(– ~,–L,O) + 1+(– ~,–L,kd)].

Fig. 1. Geometry of the problem. (lo)
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The integral I in these equations is defined by

/

B

I*(A,B, Y) = exp ( +ikz’ cos 190) HO(2)

A

An evaluation of the integrals in these equations gives

the required matrix elements of (5) and involves lengthy

manipulations. The details are omitted here, but can be

found in [16]. Now a solution of (5) gives the evanescent

current &, the reflection coefficient R, and the transmission

coeiiicieni T. This completes the solution of the coupling

between two waveguides. However, it does not provide

the radiated field of the exciting waveguide. This radi-

ation field can be obtained by introducing the results of

(5) into the integral equation (4), for a point away from

the waveguide walls, and by evaluating the resulting in-

tegrals. For points at large distances from the open ends

of the waveguides, it may be shown that the radiation

field is given by

()
1/2

E.(r) = ~ exp [–i(kp – 7r/4)]1’(0) (12)
~+m Tkp

where

{“l’(0) = [1 + exp (ikd) sin 0] 3
sin 00

4 Cos 0 + Cos 00

. {1 – Texp [–i?cL(cos 6 – cos 8.)])

+%
4 Cos:::os ,0 + $, :J”e

}
. exp (ikzn cos 0) A (kzn) . (13)

This equation gives the radiation field due to the coupling

between two semi-infinite waveguides as a function of the

reflection and the transmission coefficients and the evanes-

cent currents. In the absence of the coupled waveguide

the transmission coefficient is zero and the reflection co-

efficient is that of a semi-infinite waveguide. The system

of the simultaneous equations is then JIG, ~ .”, ~N” and R

for N + 1 unknowns.

Similarly, if the coupled waveguide is not a semi-infinite

type but has a finite length L! the induced currents on its

walls may be represented by a single unknown current

J = Je + J8. The system of simultaneou~ equations is

again for N + 1 unknowns, in which R is the reflection

coefficient in the presence of a finite coupled waveguide.

B. Transformation Method

The moment method described in the previous section

provides a general formulation for the numerical solution

of the coupling between two. waveguides. However, the

accuracy of the solution will depend on the behavior of

the evanescent currents and on the location of testing

points for the reflection and the transmission coeilicients.

Therefore, to examine the accuracy of the solution, the

transformation method, which can give more accurate

solution, is also used, provided the computation time is

not excessive. Thus, to simplify the problem, only the case

of a coupled waveguide with a finite length will be con-

sidered. Furthermore, if the separation distance ?cL be-

tween the waveguides is large enough, the, interaction

between the waveguides may be neglected and the total

radiation field may be assumed as the sum of the radiation

field from the open end of the exciting waveguide and the

field scattered by the coupled waveguide. The problem

then reduces to a two-dimensional scattering by two

parallel conducting strips, separated by a disiance d.

For a TEO,I mode propagating in the exciting wave-

guide, the radiation field is given by [13] [with a time

factor exp ( – id)]

E. = ‘=
,+@ 2a (271%p) l/g {

exp i(kp — kalsin Ol — j7r)

I sin 0 I G+(k cos 6$)G+(1c cos 6) ~14)
.

Cos o + Cos 00 }

where a = d/2 is the half-width of the wav eguides and

G+(a) is given by [13]

‘+(a)=(-)ex++it?
“[1-c+1n(a+ii+iw3}

J ‘+%) ’15).=,;5...(1+: e
where

C= 0.57721, ‘Y. = [ (n7r/2a) 2 –. lc2]l/2,

k cos 00 = j-ri and y = [a2 – kz]tj’.

This radiation field induces a current J, on the walls of

the coupled waveguide, which together with the above

radiation field gives a total radiation field in the form

~,total(r) = Ezin’ (r) + h
/

HOW (k / T – r’ I)J.(T’) d(ih-’)
w

(16)

where E.inC is given by (14). The integration path W is

along the walls of the coupled waveguide and r and rr are

the coordinates of the field and source points, [respectively.

If r is on the walls of the coupled waveguide, tlhe boundary

condition h1,606’1 = O reduces (16) to an integral equation

for the current J, which can be solved by a point-matching

method. However, for the previously mentior]led polariza-

tion of the incident field, the induced current J. is singular

near the edges of the coupled waveguide. Thus, for an

accurate evaluation of Ja a transformation may be used

to introduce an auxiliary function inside the integral

which, together with J,, provides a regular function. Since

the walls of the coupled waveguide are basically strips of

finite size, the conformal transformation of the strip onto
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a circular cylinder is the most convenient transformation.

Such a transformation introduces a metric coefficient h

inside the integral, the reciprocal of which has a singular

behavior identical to that of the induced cm-rent. The de-

tail of such a transformation was previously discussed by

Shafai [8], [15] and its application to the current problem

is shown in [16]. For the current problem the induced

currents on the walls are equal and the transforimtion

modifies the integral equation to the form

E=inO(~) = *n
!

27[H$’)(k]‘r,–r’1)
o

+ Hot’) (k I ro – r“ 1)]lz(#) c@’ (17)

where r’ and r“ are the coordinates of integration points

on the upper and the lower walls, respectively, and +’ is a

variable in the transformed domain. The function Is is the

new unknown function given by h~, and is regular. A

numerical solution of (17) can be obtained by any con-

venient method. However, since Isis regular and generally

well behaved, it may be expressed by a Fourier series of

the 4’ coordinate with unknown coefficients. For TEO,1 ex-

citation the illumination is symmetric with respect to each

strip and Ia can be assumed to be

1s(0’) = ~ an cos m$’ (18)
n==O

and the integral equation (17) becomes

E.inc(ro) = *V ~ am
1

= [Ho”) (k I ‘rO – r’ 1)
.=0 o

+ io(’) (k I 70 – T“ 1)] Cos ?’@ Ci@’. (19)

Choosing N terms from the series, N matching points

on any wall of the coupled waveguide reduces the foregoing

equation to a set of N simultaneous equations, the solu-

tion of which gives N unknown coefficients an. Practically,

the preceding Fourier expansion has some advantages over

a moment solution. Each intermediate integral can be

evaluated with any desired degree of accuracy (an ac-

curate solution for I, can be found by choosing adequate

terms within the stable region of the numerical solution)

and provides an analytical function for 1=.

Once the coefficients an are obtained, the far scattered

field can be found from

N4 r

~.’”(r) = –*T Z a.
/

cos n4f
p+m n-o o

. (exp {ikp’[cos (I3 + 0’) + cos (0 – 0’)] ] ) d@’

()2
1/2

.— exp [+i(kp – 7r/4) ]
7rkp

(20)

where

p’ = [z’q(@’) + g’2(#) ]1/2

0’ = tan–l [v’(@’)/z’(#) ]. (21)

The total radiated field is then obtained by adding the

incident and the scattered fields. The results of the nu-

merical computations are presented in the next section.

III. RESULTS AND DISCUSSION

For a TEO,, mode propagating in the exciting waveguide,

and using the moment method, some numerical results

are obtained and are dkcussed in this section. To examine

the contribution of each induced current to the radiation

field, the radiation from a single semi-infinite parallel-

plate waveguide is considered and the computed results

are shown in Fig. 2(a) and (b). The total radiation fields

are in good agreement with the results of analytical solu-

tion using the Wiener–Hopf solution [14]. The contribu-

tion of the reflected and evanescent currents to the

radiation fields are also shown and have similar behavior

with the main radiation in the forward direction.

Fig. 3 shows the radiation patterns calculated by the

moment method for a finite coupled waveguide of length

lcLz = 15 and d/X = 0.60. For the small separation dis-

tance ?cL = 0.1 the resulting pattern is almost the same

as that of a semi-infinite waveguide. This is due to the

fact that the main radiation in this case is from the open

end of the coupled waveguide. The reflection coefficients

for the previous cases are shown in Table I. Again the

magnitude of the reflection coefficient for kL = 0.1 is the

same as that of a single semi-infinite waveguide. The

phase angle, however, is different, since it represents ap-

O’t ,,A=051 i
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03 — /

/ 1
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Q“
(a)
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1
10 ,

dlA =06 /’
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08 ----— Cmtnb.ton of d’ + Jr+ J.

VI

/’;
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h
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I
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I
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(b)

Radiation pattern of a semi-infinite waveguide with a TEO,I
excitation.
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TABLE II

20 –
dli =0,6, TE0,

kL2 =t50

16 – –—–- kL=Ol

------ kL = I 0

— kL=iOO
12 —

08 –

04 –

I I
o 20 40 60 S0 too 120 140 160

e-
180

Fig. 3. Radiation pattern of two collinear waveguides by moment
method, finite coupled waveguide, and TEO,I excitation.

TABLE I

REFLECTION COEFFICIENT BY MM FOR Two COLLINEAR PARALLEIr

PLATE WAVEGUIDES OF FINITE LENGTH d/A = 0.6 AND lcL, = 15

1.0 0.325 148.1

0.1 0.196 85.1

proximately the reflection from the far end of the coupled

waveguide. A comparison between the reflection coeffi-

cients computed by the moment method and those ob-

tained using the Wiener–Hopf technique [16] is shown

in Table II. The agreement between the results of two

methods is reasonable and improves as kL increases. This

may be due to the fact that the Wiener–Hopf solution

was originally obtained by assuming a large separation

distance kL. Consequently, its accuracy improves as kL

increases.

To examine the accuracy of the moment solution, the

previous case of a finite waveguide with kLz = 15 is also

solved with the transformation method. Fig. 4 shows the

radiation patterns for lcL = 50 and d/h = 0.6 obtained

by both numerical methods and the Wiener-Hopf tech-

nique. The agreement between the results of the moment

and the transformation methods is fairly good. The small

difference between the results should be due to the inter-

action between two waveguides which was neglected in

the case of the transformation method and computational

errors in the moment solution. The Wiener–Hopf solution

is slightly different in the forward direction, which again

might be due to some edge interactions neglected in the

Wiener-Hopf derivation [16]. Additional results for the

radiation patterns using the transform+ion method are

also obtained and are shown in Fig. 5. The results for

different values of lcL, oscillate with 0, the azimuthal

angle, around the pattern of a single semi-infinite wave-
guide. The amplitude of the oscillation increases with

kL, due to the partial resonance of the coupled waveguide.

Finally, for the case of two parallel-plate semi-infinite

waveguides the radiation patterns for d/h = 0.6 and
kL = 0.1, 10, and 50 are also obtained and are shown in

Fig. 6. For kL = 10 and 50 the results are compared with

REFLECTION COEFFICIENT FOR THE CASE OF A COUPLIIID WAVEGUIDE
OF LENGTH LZ d/A = 0.6 AND kL2 = 15

U.iw W,ener-lioP*
Techm.?ue us ,Ilq w

-m’haseg
1

d!k=06 , TEo,I

kL2 = 15

20 kL =50

— W,,.., - Hoof Techdq”e

–—–- MM

------ TM I

‘l-m-i!
o ,20 40 60 80 too !20 IMO Iw 180

e“

Fig. 4. Comparison of radiation patterns by different methods,

‘F(e)’2~T

1}
kL=50, dA=06

— kLz=00 ( W,ener - Hq,f Techn,que]

20
—.—— kL~=Ol

—x—x— uL2 = t 0 TM ~~

––––– kLz = 6,0 !! -/,,,

Fig. 5. Radiation patterns for different lengths of coupled wave-
guidea, TEO,I excitation.

lF(e)l*——

dD. =06. TEo,l

— MM

20 – ------ Wiener- Hwf Techmw

,g=,,.-1 *d

S.01. 10+

kL=O 1

I .1 Pi

,-,

10 -
kL=tO

,/ \
\

/ ./ ;., 1,

,
kL=50 ‘\ !,”

, s.,,
. . .t

0 20 40 60 80 100 120 140 160 180

e“

I?ig. 6. Radiation pattern of two collinear semi-infinl te waveguides.

those of the Wiener–Hopf technique and show fairly good

agreement except in the forward direction. These dis-

crepancies should be due to the computation nal errors in

the moment method which rewdted in a finite radiation
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TABLE III

COMPARISON BETWEEN WIENER–HOPF TECHNIQUE AND MM FOR

REFLECTION AND TRANSMISSION COEFFICIENTS OF THE TE,, 1 MODE

Reflection Coefficient Tran,m, ss,on Coeff,c,ent
XL —

Wiener–ROgf Tech. MM Wmner-HOPf Tech. *M

0.1 11.ools~ 0.!399/ .5—

1.0 0. 116/@J 0.991~

10.0 0.236~ 0.285/~ 0.429/-148 0.501/:~

50.0 0.199~ 0.192/-135 0.1 Q5/147 0.261~

field at 0 = 180°. (It was found that the results of the

moment method were somewhat sensitive to the locations

of the testing points for the reflection and the transmission

coefficients. ) The computed reflection and the transmis-

sion coefficients using the moment and the Wiener–Hopf

techniques are shown in Table III. The agreement again

improves as kL increases.

In conclusion, the moment method was used to study

the coupling between two collinear parallel-plate wave-

guides. An integral equation for the induced currents on

the walls was obtained and was solved to give the reflec-

tion and the transmission coefficients and the evanescent

currents. Formulation was obtained for the special case

of two collinear waveguides of equal size, but the results

can be readily extended to the case of two waveguides of

different sizes and orientation. To examine the accuracy

of the solution, the computed results were compared with

those of the Wiener–Hopf technique and good agreement

was obtained. For large separation of the waveguides,

with a finite coupled waveguide, a transformation method

was also used and results in good agreement with those

of the moment method were obtained.

In comparison, the moment method is more general

and can yield reasonable solutions for waveguides of dif-

ferent sizes and orientations. However, it is somewhat

sensitive to the location of the testing points in numerical

solution of the integral equation. The transfor~”tion

method is more accurate, but was restricted here to large

separations and finite coupled waveguides. The Wiener–

Hopf technique discussed previously gives an analytical

solution, but its application to waveguides of different

size is too complex.
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