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Numerical Solution of Coupling Between Two Collinear

Parallel-Plate Waveguides

Y. E. ELMOAZZEN, MEMBER, 1EEE, AND LOTFOLLAH SHAFAI, MEMBER, IEEE

Abstract—The problem of coupling between two collinear parallel-
plate waveguides is investigated numerically using moment methods.
The exciting mode in the waveguide is assumed as the incident field,
and the integral equation for the induced current is expressed in
terms of the reflected, transmitted, and evanescent currents on the
waveguides. The integral equation is then solved numerically by
a point-matching method and the reflection and the transmission
coefficients and the radiated fields are obtained. To examine the
accuracy of the results, the special case of a semi-infinite exciting
waveguide coupled to a finite coupled waveguide is also considered
and is solved numerically by treating the singularities of the induced
currents using a transformation method. For a TE,,; excitation of the
exciting waveguide, the results of both numerical methods are com-
pared with the analytical results obtained previously using the
Wiener-Hopf technique, and are found to be in good agreement. The
methods are then used to study the effect of the coupled waveguide
on the radiation field.

I. INTRODUCTION

UMERICAL techniques have recently been used to
investigate certain scattering and antenna problems,
for which an exact analytical or approximate solution is
not readily obtainable. Two-dimensional problems in-
volving perfectly conducting cylinders were studied by
Mei and Van Bladel [1] and Andreasen [2] by solving
the integral equation for the induced currents using the
moment method. The scattering by the dielectric cylinders
was investigated by Richmond [37], [4] where a solution
is obtained by a numerical evaluation of the integral
equations for the polarization currents in the dielectric.
Similar scattering as well as antenna problems were also
investigated by various authors and are summarized later
by Harrington [5] and Mittra [6].

In general, the numerical evaluation of the integral
equations is carried out by using a moment or a point-
matching method to convert the integral equations to a
set of linear simultaneous equations. The number of simul-
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taneous equations for a desired degree of accuracy usually
depends on the electrical length of the cross-sectional
contour for the conducting cylinders and on the cross-
sectional area of the dielectric cylinders. However, for
problems involving discontinuities in the cross-sectional
contour a larger number of matching points may become
necessary if the induced current had a singular behavior
near the discontinuities. For an accurate solution of these
types of problems a treatment of the singularities which
can effectively reduce the required number of matching
points for a desired degree of aceuracy may be necessary.
To remove these singularities Abdelmessih and Sinclair
[7] have used Meixner’s edge conditions to describe the
behavior of the currents near a discontinuity. An alterna-
tive method based on the coordinate transformation has
also been used by Shafai [8] where the singular behavior
of the current is related directly to the geometry of the
scatterer. The convergenee of the solution may also be
improved through the use of a priori knowledge of the
solution [9]. Here the unknown solution may be assumed
as the sum of a known approximate solutlon and an un-
known perturbation funetion, which is then found by an
application of the moment method.

In the previously mentioned papers the moment method
has been applied to solve scattering problems of obstacles
with a finite cross-sectional area. The extension of the
method to two-dimensional scattering by obstacles of semi-
infinite but arbitrary cross sections has recently been in-
vestigated by Morita [107], [11]. The induced current
is assumed to be the sum of known geometrical optics
and unknown diffraction current, and the unknown eurrent
is found numerically. This method was later used by Wu
and Chow [12] to investigate the problem of discontinu-
ities inside semi-infinite waveguides. They have expressed
the induced currents in térms of propagating and evanes-
cent modes and have found evanescent currents numeri-
cally, by using their localized nature, in order to apply
the moment method for a finite section near the discon-
tinuity.

In this paper the approach of Wu and Chow is used to
formulate the coupling between two semi-infinite wave-
guides. The induced current is expressed in terms of in-
cident, reflected, transmitted, and evanescent currents
which are found by an application of the point-matching
method. The method is then applied to the case where the
coupled Waveguidé is of finite length. To examine the

accuracy of the solution the transformation method is
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also used to investigate the latter case of the finite-coupled
waveguide and the computed results are compared with
those of the moment method and the analytic results of
the Wiener-Hop{ technique [137]. The methods are then
used to study the effect of each induced current and the
coupled waveguide on the radiation field. It is shown that
the- coupled waveguide has a significant effect on the
radiation field and its pattern can be modified by changing
the separation and the length of the coupled waveguide.

II. FORMULATION OF THE PROBLEM
A. The Moment Method

" A geometry of the problem is shown in Fig. 1. Assuming
a TEy; mode to propagate in the exciting waveguide, the
current densities, due to the incident wave on the lower
and the upper walls, are equal and are given by (the time
factor exp ({wt) is understood)

sin 6,

Ji=2 exp (thz cos 6p) (1)
where 6, = sin~! (\/2d), d is the waveguide width, and ¢
is the intrinsic impedance of the medium inside the wave-
guide. Due to the discontinuity at x = 0, part of the in-
cident field reflects back into the exciting waveguide and
contributes to the reflected field. The remaining part
undergoes a diffraction at the open end of the exciting
waveguide and contributes partly to the radiation field
and partly undergoes further diffraction at the open end
of the coupled waveguide. The multiple diffractions be-
tween two waveguides give rise to the reflected and the
transmitted fields in the waveguides, which induce current
densities in the form ‘

in 6,
Jr =R Sin * exp (—ikx cos b)), x>0, y = 0,
n
(2)
" Sin 00 .
Jo b= 2T exp (thz cos 6;), < —L, y=0d
(3)

where R and 7 are the reflection and the transmission co-
efficients, respectively. The evanescent modes also con-
tribute to the induced currents on the waveguides, but
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Fig. 1. Geometry of the problem.
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their contribution is significant only near the open end
of each waveguide. Representing these evanescent currents
by J¢ = 4J ¢, the boundary condition £, = 0 on the walls
gives the following integral equation for the induced cur-
rents [127]:

0 =2 [ L0!) +T507) + () + 746" I
w

cklr—r"])dkr)  (4)

where r and 7’ are the coordinates of the field and source
points on the walls of the waveguides. The integration
path W is along the walls, which support the respective
current distribution. Since this integral equation can not
be solved exactly, a moment method will be used to reduce
the integral equation to a set of linear simultaneous equa-
tions. However, the integrals involving J¥, J7, and J¢ can
be evaluated exactly which gives the excitation and the
coefficients R and 7. For the evanescent currents J¢, using
unit pulses for the base function, the waveguide walls
may be divided into N segments with a current J,.° at
the center of each segment. Since the evanescent currents
are significant only near the open ends, the N segment
may be chosen between z = 0 and z = 2, and between
x = —L and z = 2. Equation (4) then contains N 4 2
unknowns which, with N + 2 test points, can be written
in a matrix form as

O L fd = [gm] (5)
where
("7/4)Jme: m = 1;27' M "N
fm=1 R, m=N+1 (6}
T, m=N+2
oo = — 2001 0,9,0) + L(0, 0, k)] (7)

4

and the elements of the matrix .. are given as follows.
1) Form =1,2,+++ N+ 2andn = 1,2,+++,N

[H® (k| 2m — o’ |) + Ho® (k[ (xr,

— z,)? + d2 V) A (k) m = n
lm,n =
[1—<(2/7) (In [A(kz,) /4]
+ v — 1 + H®(kd)JA(kx,"), m=mn
(8)
where v = 0.5772+--.
2) Form =1,2,--, N+ 2andn=N+1
0 ]
bupvis = = [12(0,0,0) + 1_(0,= k)] (9)
3) Form =12,--, N+ 2andn=N+2
in 6,
navss = = [La(— 0, L,0) + L= ,~Lkd) ]

(10)
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The integral I in these équations is defined by
R ,
T.(A,B,Y) = / exp (2ikz’ cos 60) Ho®
A

{[(ka’ — kam)® + (ky)*]¥%} d(ka'). (11)

An evaluation of the integrals in these equations gives
the required matrix elements of (5) and involves lengthy
manipulations. The details are omitted here, but can be
found in [167]. Now a solution of (5) gives the evanescent
current J°, the reflection coefficient B, and the transmission
coefficient 7T". This completes the solution of the coupling
between two waveguides. However, it does not provide
the radiated field of the exciting waveguide. This radi-
ation field can be obtained by introducing the results of
(5) into the integral equation (4), for a point away from
the waveguide walls, and by evaluating the resulting in-
tegrals. For points at large distances from the open ends
of the waveguides, it may be shown that the radiation
field is given by

2 1/2
E.(r) = ('I—rk—p) exp [—i(kp — «/9)JF (0) (12)

where

) sin 6
F(0) = [1 + exp (ikd) sin 8] {4 m

« {1 — Texp [—tkL(cos 8 — cos 6p) ]}
i_Ri Sin 0(]
4 cos @ — cos by

ul 1

- exp (tkz, cos 0)A(kmn)} . (13)
This equation gives the radiation field due to the coupling
between two semi-infinite waveguides as a function of the
reflection and the transmission coefficients and the evanes-
cent currents. In the absence of the coupled waveguide
the transmission coefficient is zero and the reflection co-
efficient is that of a semi-infinite waveguide. The system
of the simultaneous equations is then Jy, -+, Jx* and R
for N 4 1 unknowns.

Similarly, if the coupled Waveg:ulde is not a semi-infinite
type but has a finite length L, the induced currents on its
walls may be represented by a single unknown current
J =Je+ Jt The system of simultaneous equations is
again for N + 1 unknowns, in which R is the reflection
coefficient in the presence of a finite coupled waveguide.

B. Transformation Method

The moment method deseribed in the previous section
provides a general formulation for the numerical solution
of the coupling between two waveguides. However, the
accuracy of the solution will depend on the behavior of
the evanescent currents and on the location of testing
points for the reflection and the transmission coefficients.
Therefore, to examine the accuracy of the solution, the
transformation method, which can give more accurate
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solution, is also used, provided the computation time is
not excessive. Thus, to simplify the problem, only the case
of a coupled waveguide with a finite length will be con-
sidered. Furthermore, if the separation distance kL be-
tween the waveguides is large enough, the interaction
between the waveguides may be neglected and the total
radiation field may be assumed as the sum of the radiation
field from the open end of the exciting waveguide and the
field scattered by the coupled waveguide. The problem
then reduces to a two-dimensional scattering by two
parallel conducting strips, separated by a distance d.

For a TEy; mode propagating in the exciting wave-
guide, the radiation field is given by [18] [with a time
factor exp (—wt) |

2a/(2rkp) 2 ko — ka | sing | —
- e 20(27rk NE exp{ (kp — ka |sind |

| sin 8 | G4 (k cos 60) Gy (k cos 6)
cos 8 -+ cos 6y

} (14)

where a = d/2 is the half-width of the waveguides and
Gy (@) is given by [13]

[0 )3] ka 12 LT Sfaa
Gy (o) _<70—|-a> exp{@;—{—z(ﬂ)
[1"C+ln< >+Z ]-l—z-l ( _Y>}
T
had o . 2a0
II (1 + —) exp (z —) (15)
n=1,3,5¢- ¥Yn nw
where
e = 0.57721, = [(nr/2a)? — k2]u2,
keos = jvi and v = [o? — k212

This radiation field induces a current J, on the walls of
the coupled waveguide, which together with the above
radiation field gives a total radiation field in the form

Boml(r) = B o) + 1 f HoOW | 1 — ' [)Jo(r") dkr’)

(16)

where E,n¢ is given by (14). The integration path W is
along the walls of the coupled waveguide and r and r’ are
the coordinates of the field and source points, respectively.
If r is on the walls of the coupled waveguide, the boundary
condition E tt! = ( reduces (16) to an integral equation
for the current J, which can be solved by a point-matching
method. However, for the previously mentioned polariza-
tion of the incident field, the induced current J/, is singular
near the edges of the coupled waveguide. Thus, for an
accurate evaluation of J, a transformation may be used
to introduce an auxiliary function inside the integral
which, together with J, provides a regular function. Since
the walls of the coupled waveguide are basically strips of
finite size, the conformal transformation of the strip on to
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a circular cylinder is the most convenient transformation.
Such a transformation introduces a metric coefficient h
inside the integral, the reciprocal of which has a singular
behavior identical to that of the induced current. The de-
tail of such a transformation was previously discussed by
Shafai [8], [15] and its application to the current problem
is shown in [16]. For the current problem the induced
currents on the walls are equal and the transformation
modifies the integral equation to the form

21
Bane(r) = tn [ LH® (70— 1"
0

+ H® (k | rg — 1’ D]Iz(d”) dd’l

where 7 and " arée the coordinates of integration points
on the upper and the lower walls, respectively, and ¢’ is a
variable in the transformed domain. The function 7, is the
new unknown function given by h4/. and is regular. A
numerical solution of (17) can be obtained by any con-
venient method. However, since I, is regular and generally
well behaved, it may be expressed by a Fourier series of
the ¢’ coordinate with unknown coefficients. For TE,,; ex-
citation the illumination is symmetric with respect to each
strip and I, can be assumed to be

(17)

1.(¢") = X a,cosn¢’ (18)

n=0

and the integral equation (17) becomes

0

Ban(r) = 30 X an [ CHO ([ ro— ')
¢

n=0
+ HO (k[ 7o — 7" )] cos ng’ do’.  (19)

Choosing N terms from the series, N matching points
on any wall of the coupled waveguide reduces the foregoing
equation to a set of N simultaneous equations, the solu-
tion of which gives N unknown coefficients a,,. Practically,
the preceding Fourier expansion has some advantages over
a moment solution. Each intermediate integral can be
evaluated with any desired degree of accuracy (an ac-
curate solution for I. cah be found by choosing adequate
terms within the stable region of the numerical solution)
and provides an analytical funetion for I.

Once the coefficients a, are obtained, the far scattered
field can be found from -

N=1

Ere(r) = —49 20 an/ cos ne’
p 0

—> 00 n=0

- (exp {tkp’[cos (6 + ¢') + cos (6 — 6)]}) d¢’

2 1/2
. (E) exp [+i(kp — 7/4)] (20)
where
o= [2"(¢') + y?(¢") I
¢’ = tan~! [y’ (¢") /2’ (¢")]. (21
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The total radiated field is then obtained by adding the
incident and the scattered fields. The results of the nu-
merical computations are presented in the next section.

III. RESULTS AND DISCUSSION

For a TE,,; mode propagating in the exciting waveguide,
and using the moment method, some numerical results
are obtained and are discussed in this section. To examine
the contribution of each induced current to the radiation
field, the radiation from a single semi-infinite parallel-
plate waveguide is considered and the computed results
are shown in Fig. 2(a) and (b). The total radiation fields
are in good agreement with the results of analytical solu-
tion using the Wiener-Hopf solution [147]. The contribu-
tion of the reflected and evanescent currents to the
radiation fields are also shown and have similar behavior
with the main radiation in the forward direction.

Fig. 3 shows the radiation patterns calculated by the
moment method for a finite coupled waveguide of length
kL; = 15 and d/X» = 0.60. For the small separation dis-
tance kL = 0.1 the resulting pattern is almost the same
as that of a semi-infinite waveguide. This is due to the
fact that the main radiation in this case is from the open
end of the coupled waveguide. The reflection coefficients
for the previous cases are shown in Table 1. Again the
magnitude of the reflection coefficient for kL = 0.1 is the
same as that of a single semi-infinite waveguide. The
phase angle, however, is different, since it represents ap-
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Fig. 2. Radiation pattern of a semi-infinite Waveguide with a TE,,,
excitation.
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Fig. 3. Radiation pattern of two collinear waveguides by moment
method, finite coupled waveguide, and TE, ; excitation.

TABLE I

RerLEcTION COEFFICIENT BY MM FOR Two COLLINEAR PARALLEL-
PrLaTE WAVEGUIDES oF FinrTE LEnaTH d/A = 0.6 aND kL, = 15

KL Magni tude phase 1n degrees

10 0.233 -103.6

1.0 0.325 148.1

0.1 0.198 85.1

proximately the reflection from the far end of the coupled
waveguide. A comparison between the reflection coeffi-
cients computed by the moment method and those ob-
tained using the Wiener-Hopf technique [167] is shown
in Table II. The agreement between the results of two
methods is reasonable and improves as kL increases. This
may be due to the fact that the Wiener-Hopf solution
was originally obtained by assuming a large separation
distance kL. Consequently, its accuracy improves as kL
increases.

To examine the accuracy of the moment solution, the
previous case of a finite waveguide with kL, = 15 is also
solved with the transformation method. Fig. 4 shows the
radiation patterns for kL = 50 and d/A = 0.6 obtained
by both numerical methods and the Wiener—Hopf tech-
nique. The agreement between the results of the moment
and the transformation methods is fairly good. The small
difference between the results should be due to the inter-
action between two waveguides which was neglected in
the case of the transformation method and computational
errors in the moment solution. The Wiener-Hopf solution
is slightly different in the forward direction, which again
might be due to some edge interactions neglected in the
Wiener-Hopf derivation [16]. Additional results for the
radiation patterns using the transformgtion method are
also obtained and are shown in Fig. 5. The results for
different values of kL. oscillate with 6, the azimuthal
angle, around the pattern of a single semi-infinite wave-
guide. The amplitude of the oscillation increases with
kL due to the partial resonance of the coupled waveguide.

Finally, for the case of two parallel-plate semi-infinite
waveguides the radiation patterns for d/» = 0.6 and
kL = 0.1, 10, and 50 are also obtained and are shown in
Fig. 6. For kL = 10 and 50 the results are compared with
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TABLE II

RerLECTION COEFFICIENT FOR THE CASE OF A CourLED WAVEGUIDE
or Lenara L, d/X = 0.6 axp kL, = 15

Using Wiener-Hopf

VIt
Technique Using MM

KL

Magnitude phase 1n degrees Magnitude thase in degrees

10 0.200 ~113 0.233 -103.6
20 0.168 ~123 0.151 -113
50 0.199 -133 0.194 -142
Fen?
d4/X=06 , TEo,
kip =15
20k KL =50 _
Wiener - Hopf Technique

L e M J

S ™ 1

| A

1O I” N
I/ ¥
L 3 [! L
L Va o -
N
| PNy
I
N R I [P 1 e A T TS B
o 20 40 60 80 100 120 140 160 180

Fig. 4. Comparison of radiation patterns by different methods.

IF(eNn?
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Fig. 5. Radiation patterns for different lengths of coupled wave-
guides, TE, ; excitation.
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Fig. 6. Radiation pattern of two collinear semi-infinite waveguides.

those of the Wiener-Hopf technique and show fairly good
agreement except in the forward direction. These dis-
crepancies should be due to the computational errors in
the moment method which resulted in a finite radiation
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TABLE II1

ComparisoN BETweEN WieNER-Hopr TECENIQUE AND MM FoOR
REFLECTION AND TrRANsMIsstoN CoerriciENTs OF THE TE, ; Mopr

Reflection Coefficient Transmission Coefficient

XL

Wiener—-Hopf Tech. MM

Wiener-Hopf Tech. MM

0.1 -
1.0 -
10.0 0.236/-111

50.0 0.199/-135

0.116/131
0.285/-113

0.192/~-135

0.0015/-103 - 0.999/ .5

- 0.991/7.5
0.429/-148 0.501/-159

0.195/147 0.261/140

field at 8 = 180°. (It was found that the results of the
moment method were somewhat sensitive to the locations
of the testing points for the reflection and the transmission
coefficients.) The computed reflection and the transmis-
sion coefficients using the moment and the Wiener-Hopf
techniques are shown in Table ITI. The agreement again
improves as kL increases.

In conclusion, the moment method was used to study
the coupling between two collinear parallel-plate wave-
guides. An integral equation for the induced currents on
the walls was obtained and was solved to give the reflec-
tion and the transmission coefficients and the evanescent
currents. Formulation was obtained for the special case
of two collinear waveguides of equal size, but the results
can be readily extended to the case of two waveguides of
different sizes and orientation. To examine the accuracy
of the solution, the computed results were compared with
those of the Wiener~Hopf technique and good agreement
was obtained. For large separation of the waveguides,
with a finite coupled waveguide, a transformation method
was also used and results in good agreement with those
of the moment method were obtained.

In comparison, the moment method is more general
and can yield reasonable solutions for waveguides of dif-
ferent sizes and orientations. However, it is somewhat
sensitive to the location of the testing points in numerical
solution of the integral equation. The transformation
method is more accurate, but was restricted here to large
separations and finite coupled waveguides. The Wiener—
Hopf technique discussed previously gives an analytical
solution, but its application to waveguides of different
size is too complex.
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